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ABSTRACT 
In this study, we present a 1D method to predict the droplet 

ejection of a drop-on-demand (DoD) inkjet which includes the 
drop breakup, coalescence, and the meniscus movement at 
nozzle orifice. A simplified 1D slender-jet analysis based on the 
lubrication approximation is used to study the drop breakup. In 
this model, the free-surface (liquid-air interface) is represented 
by a shape function so that the full Navier-Stokes (NS) equations 
can be linearized into a set of simple partial differential equations 
(PDEs) which are solved by method of lines (MOL). The shape-
preserving piecewise cubic interpolation and third-order 
polynomial curve are employed to merge approaching droplets 
smoothly. The printhead is simplified into a circular tube, and a 
2D axisymmetric unsteady Poiseuille flow model is adopted to 
acquire the relationship between the time-dependent driving 
pressure and velocity profile of the meniscus. Drop breakup and 
meniscus movement are coupled together by a threshold of 
meniscus extension to complete a full simulation of droplet 
ejection. These algorithms and simulations are carried out using 
MATLAB code. The result is compared with a high fidelity 2D 
simulation which was previously developed [10], and good 
agreement is found. This demonstrates that the proposed method 
enables rapid parametric analysis of DoD inkjet droplet ejection 
as a function of nozzle dimensions, driving pressure and fluid 
properties. 
 
Keywords: DoD inkjet, drop breakup, drop coalescence, 
meniscus movement, method of lines, unsteady Poiseuille flow 

 
INTRODUCTION 

Inkjet printing has advanced significantly since its first 
commericalisation in 1970s. The dramatic expansion of printing 
material [1] makes it not only a term decribing graphic printing 
but also a term covering a range of technologies which involve 
the ejection of droplets from a printhead onto a substrate. Due to 
its ability to precisely deliver picoliter-scale volumes of liquid at 
high speed and low cost, inkjet printing has a wide variety of 

application in research and manufacturing. These include diverse 
processes such as additive manufacturing [2], electronic device 
prototyping [3], pharmaceutics [4], tissue engineering [5] and 
spray cooling of electronics [6].  

 

 

Figure 1. Schematic of CIJ. 

 

Figure 2. Schematic of DoD inkjet. 

Generally speaking, inkjet devices are classified as one of 
two kinds: countinuous inkjet (CIJ) and DoD inkjet which are 
distinguished by the form of ejected liquid. The schematic of 
these two systems are shown in Figure 1-2. The CIJ device ejects 
a continuous stream of liquid, whereas the DoD device ejects 
droplets at a regular time interval and is controlled by electronic 
signals. Further, depending on the actuation of the driving pulse, 
there are two major varieties of DoD inkjets: piezoelectric inkjet 
(PIJ) and thermal inkjet (TIJ). For PIJ, the pressure gradient is 
generated by the deformation of a piezoelectric transducer [7]. 
In contrast, TIJs use a thin film resistor to boil part of the ink, 
generating an expanding bubble that pushes ink out of the nozzle 
[8]. Because the heating element can be microintegrated into the 
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manufacturing process, TIJ printheads can be packed in a higher 
density than PIJs which results in a higher printing resolution [9]. 
The drawback of TIJs is that they are only compatible with 
certain liquids owing to their heating process. 
 

 

Figure 3. Drop evolution of DoD inkjet : comparision between 
3D simulation and experiement.[10] 

When the liquid is ejected from the DoD inkjet device, it 
undergoes a series of physical events: 1. the drop emerges from 
the nozzle due to actuation; 2. the drop pinches off from the 
nozzle; 3. the drop breaks up into a main droplet followed by 
multiple satellite droplets due to Plateau-Rayleigh instablity; 4. 
the satellite droplets may coalesce or catch up to and recombine 
with the main droplet. The first 3 events are clearly demonstrated 
in Figure 3. Satellite droplets often cause a detrimental effect on 
printing quality, because they tend to scatter on the substrate. 
Therefore, accurate modelling of breakup and coalescence of 
droplets is a high priority in the simulation of inkjet droplet 
ejections. 

In the past, we successfully developed a 3D CFD code based 
on the finite-volume method (FVM) to model the droplet 
ejection process from inkjet printheads [10]. Although the full-
scale CFD simulations can reveal the physical details of droplet 
ejection (Figure 3), it is not suitable for large scale device design 
optimization due to high computational costs. 

In this paper, to reduce the computational cost, we use a 1D 
method to model the main process of droplet ejection of DoD 
inkjets including drop breakup and drop coaelscence as well as 
meniscus movement at the nozzle orifice, realizing a simulation 
from driving pressure to drop evolution. Firstly, we use a 
simplified 1D slender-jet analysis based on the lubrication 
approximation to study the drop breakup [11]. In this model, the 
free-surface is represented by a shape function so that the full NS 
equations can be linearized into a set of simple PDEs of motion 
which are solved by MOL. Because of the motion of droplets and 
to circumvent frequent remeshing, the arbitrary Lagrangian-
Eulerian method [12] is applied and surface evolution is tracked 
by a moving uniform staggered mesh in Lagrangian coordinates. 
Secondly, due to the high sensitivity of shape of droplets and 
high smoothness requirement in blending area, we use the shape-
preserving, piecewise cubic interpolation and third-order 

polynomial curve to merge approaching droplets smoothly. A 
minimum distance between droplets is set to avoid wrong 
merging or late merging. Thirdly, we simplify the printhead into 
a circular tube and use a 2D axisymmetric unsteady Poiseuille 
flow model [13] to acquire the relationship between time-
dependent driving pressure and the velocity profile of the 
meniscus. If the meniscus extends to the length of the nozzle 
orifice radius, the meniscus movement model transitions into the 
drop breakup model to fully simulate droplet ejection from a 
DoD inkjet. MATLAB code is used to implement the algorithm 
and simulation mentioned above. 

To ensure that the analytical solution of the velocity profile 
of the meniscus is correct, we validated it by superposition of 
starting Poiseuille flow. Under a typical testing driving pressure 
used by Fromm[14] and Adams [15], the result of the 1D model 
is compared with a 2D simulation modified from the 
aforementioned 3D CFD code and good agreement is found. The 
present research demonstrates that the proposed method enables 
rapid parametric analysis of droplet ejection from DoD inkjets as 
a function of nozzle dimensions, driving pressure and fluid 
properties. 

MODEL OF DROP BREAKUP 
In this section, we present how to reduce the full NS 

equations into a 1D problem for an axisymmetric incompressible 
Newtonian fluid and explain our numerical method. 

The droplet ejection process is virtually a liquid-air 
multiphase flow which involves the solution of the NS equations 
for both fluids. However, due to the high liquid-air density ratio 
and extremely short period of droplet ejection time, the viscous 
force of air can be neglected, i.e. the shear stress along free 
surface is assumed to be zero. Thus only one phase, the liquid 
flow, is consider in subsequent analysis. 

Given the high velocity of typical inkjet droplets (10-30m/s) 
and tiny diameter of orifice (10-30μs), the Froude number 
representing the ratio of inertia force and gravity is very small, 
and the Bond number representing the ratio of surface tension 
and gravity is very large, thus we can neglect gravity in the 
governing equations safely. Supposing dynamic viscosity, 
surface tension, density and shape function of fluid as μ, σ, ρ and 
h(z,t), respectively, we have 
 
Navier-Stokes eq. 
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Continuity eq. 
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The non-shear stress assumption gives the first boundary 

condition (BC): 
 

0
r h

n t
=

⋅Τ ⋅ =


  (4) 
 

The stress balance in normal direction of interface gives the 
second BC: 
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In equations (4) and (5), Τ  is the stress tensor in fluid, n  

and t
  are unit vectors normal and tangential to the interface 

respectively, and R1 and R2 are the principal radii of 
curvature.Obviously, the right-hand side (RHS) of (4) is Young-
Laplace equation which represents the capillary pressure 
difference across the interface. In detail, (4) and (5) are 
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where the prime refers to differentiation with respect to z. 

Because the radial velocity field at interface is exactly the 
change rate of shape, it gives the third BC: 
 

'z r r h

Dh h v h v
Dt t =

∂
= + =
∂

 (9) 

 
Note that the object of our model is a slender column of liquid 

whose axial scale is much larger than the radial scale, thus 
lubrication approximation can be applied. In this approximation, 
radial inertia is neglected, and axial velocity and pressure are 
assumed to be uniform in radial direction, so the Taylor series of 
vz and p can be just functions of r: 

 
( ) ( ) ( ) 2

0 2, , , ,zv r z t v z t v z t r= + +…  (10) 
 
( ) ( ) ( ) 2

0 2, , , ,p r z t p z t p z t r= + +…  (11) 
 
From continuity equation (3) and (10), we obtain 
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After pluging (10)-(12) into (1), (2) and (6)-(9), and solving 
these equations to the lowest order in r, we finally transform the 
NS equations into a 1D problem, i.e. two coupled 1D PDEs of 
motion: 
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in which H is the double of mean curvature which determines 
capillary pressure. 

Previous analysis is all based on Euler coordinates and not 
compatible with a moving boundary, therefore the equations of 
motion need to be modified to fit to Lagrangian coordinates. In 
the pure Lagrangian method, nodes move with the fluid velocity, 
which often causes severe distortion of mesh after a period of 
time. As a result, frequent checking of mesh quality and 
remeshing increases the computional cost. To avoid this 
disadvantage, we use the arbitrary Lagrangian-Euler method to 
ensure that nodes are always evenly distributed in a droplet. 

First, we map a fixed computation space x to the moving 
physical space z [12]: 
 

( )( , ) ( ) ( )     [ , ],  [0,1]z x t xL t B t z B B L x= + ∈ + ∈  (16) 
 
where B is the z coordinate of the beginning point of liquid, L is 
the length of liquid in physical space. Because of the linear 
relationship, nodes in physical space always have the same 
distribution as the computation space.  

Now we calculate the total time derivative in computation 
space with the chain rule. Let’s operate on a scalar field ϕ(z, t): 

 

 ( )d dz xL B
dt t z dt t z
φ ∂φ ∂φ ∂φ ∂φ
= + = + +
∂ ∂ ∂ ∂

   (17) 

 
in which Ḃ is the the velocity of the beginning node vbegin, and 
L̇ is the contraction/relaxation rate of liquid vend-vbegin . 

Substituting ϕ with v and h, and inserting them into (13) 
and (14), we get the modified equations of motion in Lagrangian 
coordinates. In addition, for completeness, equation (15) is 
written here again. 
 

2
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We reiterate that the velocity and height are not tracked by 

the pure Lagrangian coordinates and the nodes do not move with 
fluid streamlines. This Lagrangian coordinates is defined by 
equation (16), and that is why (18) and (19) still retain the 
advection term. 

Discrete equations of motion (18)-(20) are solved by MOL 
[16] subject to appropriate BCs and initial conditions (ICs). 
Specifically, we define a uniform staggered mesh in 
computational space and use the finite difference method to 
represent all the partial spatial derivative term in RHS of (18)-
(20). For example, we apply a first order upwind scheme for the 
advection term and second order central difference scheme for 
the other terms. In this way, (18) and (19) are transformed into 
two ordinary equations with only the partial time derivative of v 
and h on the left-hand side (LHS). We integrate v in one set of 
nodes and integrate h and H in the other set of staggered nodes 
as shown in Figure 4. Ultimately the MATLAB ODE solver 
routine ‘ode23t’ is used to implement MOL. 

 

 

Figure 4. Uniform staggered mesh. 

MODEL OF DROP COALESCENCE 
The first thing we need to figure out in drop coalescence is 

how to judge when a coalescence is going to happen. To avoid 
an immediate coalescence after breakup and overlap caused by 
late coalescence, we give the following condition:  

 
2 1( ) 0.8v v dt L− × > ∆  (21) 

 
in which v1, v2, dt and ΔL are velocity of the tail node of the first 
droplet, velocity of the head node of the second droplet, time step 
and distance between two droplets respectively which are shown 
in Figure 5(a). If this condition is satisfied, a coalescence 
happens. 

Note that although mesh is evenly distributed in a droplet all 
the time, different droplets usually have different mesh intervals 
due to extension and contraction. Accordingly, before blending, 
we need to remesh the whole space occupied by the merged 
droplet with a uniform mesh. This procedure is shown in Figure 
5(b). Because the evolution of drop is highly sensitive to its 
shape, we choose the shape-preserving piecewise cubic 
interpolation to evaluate the height and velocity at remeshed 
nodes. 

After remeshing, two nodes nearest to the approaching ends 
can be identified which is shown in Figure 5(c). We call these 
two nodes clip points because the area between them, namely 
blending area, will be clipped out for shape reconstruction. 

Hanchak [12] found that the smoothness of the blending area 
is paramount for numerical stability, therefore we follow the 
third-order polynomial curve to construct a smooth contour in 
the blending area which means, except for the clip point, at least 
two more equations are needed to determine the curve. These 
two equations are given by a throat which is located in the center 
of blending area with a height of 1% of orifice radius and a slope 
of zero. Figure 5(d) shows the result of drop coalescence with a 
highlight on blending area and throat. 

While this blending method is reliable and robust, it does 
add a small amount of mass into the system. We examined 
several instances and found that the additional mass is less than 
1% of the whole drop and is therefore negligible. 
 

 

Figure 5. Numerical procedure of drop coalescence: a) two 
approaching droplets with different mesh interval. b) remeshing 
the whole space occupied by the merged droplet with a uniform 
mesh. c) finding clip points and blending area. d) a merged 
droplet after reconstruction of the blending area. 
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MODEL OF MENISCUS MOVEMENT 
The structure of DoD inkjet printhead is diverse and 

complicated. For example, the PIJ has four kinds of mode: 
squeeze, bend, push and shear [17], and all of them have different 
structures. In general, a DoD inkjet printhead consists of three 
main components: firing chamber, ink flow channel and nozzle. 
However, for simplicity and to lower the computational burden, 
we just consider the printhead as a circular tube so that a 2D 
axisymmetric unsteady Poiseuille flow model can be applied to 
mimic the movement of meniscus. 

In this section, we start from the governing equations for 
Poiseuille flow to derive an analytical solution of velocity profile 
and demonstrate the way to couple the meniscus model with the 
drop breakup model. 

In Poiseuille flow, only the axial velocity component is 
considered, which means that the NS equations is reduced into 
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With the following scalar (23), (22) can be transformed into 

dimensionless form (24): 
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in which r0 is the radius of orifice and L is the length of nozzle. 

By performing a Laplace transform for (24) with respect to 
t∗ and applying initial condition u∗(0, 𝑟𝑟∗) = 0, we get an ODE: 
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d u du su p
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in which u�  is a function of s and r∗, while p�𝑧𝑧  depends on s 
only. 

A particular solution of (25) is u� = −p�𝑧𝑧/𝑠𝑠  and the 
corresponding homogeneous equation can be written as Bessel’s 
differential equation with assumption η = 𝑖𝑖r∗√𝑠𝑠: 
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Therefore, the general solution of (26) is 
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Through BCs of u�(𝑠𝑠, 0) = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and u�(𝑠𝑠, 1) = 0, the c2 

is determined as zero and u� is simplified as 
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From the residue thorem for contour integrals, the inverse 

Laplace transform of g� is 
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where γ is an arbitrary real number that is sufficiently positive 
and bn is the eigen value of J0�𝑖𝑖√𝑠𝑠� = J0(b𝑛𝑛) = 0. 

With the convolution theorem, the dimensionless analytical 
solution for u∗  driven by time-dependent pressure gradient 
p𝑧𝑧∗(t∗) is 
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where 
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Obviously, the only unkown in (30)-(31) is Porifice. Since 

Porifice is capillary prsessure which is determined by the shape of 
meniscus , we can always derive the initial velocity of meniscus 
from an initial shape. Then the initial velocity can yield the the 
shape of next time step which will further produce the velocity 
of next time step. As this loop continues, we can acquire the 
shape and velocity of meniscus at any moment.  

Although the accurate shape of meniscus demands many 
points to depict, we just use a segment of sphere determined by 
the position of vertex to represent it, which is shown in Figure 
6(b). This simplification can greatly ease the calculation, 
because we only need to consider the centerline velocity 
u∗(t∗, 0) (32) and have an analytical solution of Porifice (33)-(34). 
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The RN and RT and 𝑎𝑎 in (33) are normal and tangential principle 
radus of meniscus, and extension of vertex. Equation (34) is the 
Young-Laplace equation. 
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Nevertheless a segment of sphere is unable to represent the 
meniscus, if the extension of vertex is less than negative orifice 
radius, such as the case in Figure 6(a). Actually this scenario 
happens a lot, especially at the start of a pressure wave where a 
strong negative pressure suck the meniscus into nozzle. In this 
case, we switch to an hemi-ellipsoid to represent the meniscus. 
The expression of RN and RT are given in (35). 
 

( )
2

0
0 0             N T

rR r R a r
a

= = < −  (35) 

 

 

Figure 6. Different stage of meniscus: a) hemi-ellipsoid: the 
extension of vertex is less than negative orifice radius due to 
negative driving pressure at the start of a pulse. b) segment of 
sphere: the extension of vertex is shorter than orifice radius c) 
first coupling moment: the extension of vertex reaches positive 
orifice radius and the hemisphere is discretized by a uniform 
staggered mesh. The boundary condition of drop breakup model 
is the mean velocity at nozzle orifice. The blue dash line is the 
position of orifice and the red circle is the position of vertex 

The meniscus can not extend without limitation. When the 
extension of the vertex is larger than the orifice radius, i.e. the 
shape of meniscus reaches a positive hemisphere, the model of 
drop breakup starts to couple. The initial condition is provided 
by the discretization of hemisphere with a uniform staggered 
mesh and the assumption that the hemisphere moves uniformly 
with the mean velocity. The boundary condition is determined by 
the mean velocity at orifice all the time. In (35) we find that the 
mean velocity is also a function of p𝑧𝑧∗(t∗), thus according to 
(31) (33) and (34), the boundary condition can definitely couple 
with the drop breakup model which updates the shape of droplet.  
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Specifically, after a time step, the drop breakup model 

outputs a new shape of drop and the velocity along it. By 
applying (20) and (34), this new shape produces a new Porifice 
which can be subsituted into (35) to yield a new mean velocity. 
This new mean velocity again becomes the new boundary 
condition. By the loop, the two models are coupled together. 

Up to now, we only used umean and ucenter in the model of 
meniscus, although the analysis of velocity profile is based on 
2D. Hence our simulation is still a 1D problem. 

RESULT 
The mean velocity at orifice is the most critical factor in our 

1D method, because it is the joint between drop breakup model 
and meniscus model. To ensure the correctness of the complex 
equation of umean (23), which is also an indirect validation of (30), 
we compared it with the superposition of starting Poiseuille flow 
(35). Referring to [18] and [19], one can find the detailed 
derivation of (35). 
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As can be seen in (35), the summation is a damping function. 

When t=0, u is minimum 0 and the summation is maximum    
1-(r/r0)2, and when t goes to inifinity, u reaches its maximum  [1-
(r/r0)2]umax (fully developed flow) and the summation reaches 
minimum 0. Therefore, during the damping period (from the 
second time step), for every component u in superposition which 
reach its maximum u(dt) at first time step, the summation should 
multiply a factor λ to make it reach u(dt) when t=dt. 
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 − 

 (37) 

 
As a consequence, the expression of superposition is 
 

( )
1

20 0 1
max 3 2

1 1 1 0

8 ( / )( , ) ( , )+ ( ) exp
i

i k k n k
i n

k n n n

J b r r tu t r u dt r r u b
b J b r

νλ
− ∞

−

= =

  
= −  

  
∑ ∑  (38) 

 
where the superscript represents the time step. 

By comparison in Figure 7, we can find the dash line 
(solution of superposition) almost overlaps the blue solid line 
(analytical solution) and both of them has a short time lag behind 
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the purple solid line which is the driving pressure wave. This 
confirms that the analytical solution of the mean velocity at the 
orifice is correct.  

 

 

Figure 7. Comparison of different solutions of mean velocity at 
the orifice: the blue solid line is the analytical solution, and the 
dashed line is the solution of superposition. The purple solid line 
is the driving pressure wave. 

To validate the whole 1D method by using the following ink 
properties and nozzle dimensions (39), we compare our result 
with a high fidelity 2D simulation modified from the previously 
developed 3D CFD code [8] under a typical testing driving 
pressure (Table 1 and Figure 8) used by Fromm [14] and Adams 
[15]. 
 

3

0

.135g/cm     dym/cm    0.0615P
10 m             50 mr L

ρ σ µ
µ µ

=1 = 67.26 =
= =

 (39) 

 

 

Figure 8. A typical testing driving pressure. 

t/�𝑟𝑟0�
𝜌𝜌𝑟𝑟0
𝜎𝜎 � P/ �

𝑟𝑟0
𝜎𝜎
� 

0.00 - 0.21 -60 

0.21 - 0.82 +80 

0.82 - 1.43 +60 

1.43 - +1 

Table 1. A typical testing driving pressure. 

As shown in Figure 8, the 1D and 2D method agree closely 
in the first 5μs where includes the meniscus movement and 
models coupling. This indicates good performance of our 
simplification in the meniscus model. After 7μs (Figure 9), a 
significant difference appears. The meniscus of the 2D method 
has an overturned surface around the orifice which is unable to 
be described by the shape function of 1D method, but the shape 
out of the orifice is still in good agreement. Besides, it is 
noteworthy that the first breakup of both methods are slightly 
after 11μs, which demonstrates a good temporal accuracy of the 
1D method. At 20μs (Figure 10), the relative speed of both drops 
changes. Due to its longer tail and larger mass, the drop modeled 
by the 2D method is passed by that of the 1D method and the 
distance between them keeps increasing after 28μs where both 
drops are in uniform motion with different velocities.  

Figure 11 shows the comparison of drop volume where the 
1D and 2D method has a final volume of 4.06pl and 4.56pl 
respectively. The 11% difference is quite acceptable, considering 
the inevitable mass loss caused by overturned surface in 1D 
method. Comparison of average velocity which is the quotient of 
the total momentum and total mass is shown in Figure 12. The 
1D method becomes stable in 538cm/s, and the 3D method has a 
final average velocity of 492cm/s. Under the same driving 
pressure, the reduced mass of the 1D method results in its higher 
velocity. 

 
 

 

Figure 8. Meniscus movement and drop evolution in 1-5μs: the 
red solid line is the result of 2D simulation and the filled area is 
the drop of 1D method. 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.00 5.00 10.00 15.00 20.00

pr
es

ur
e 

(M
pa

)

time (μs)

driving presure

7 Copyright © 2017 ASME



 

 

Figure 9. Drop evolution in 7-15μs: The breakup time of 1D 
and 3D method are very close which is slightly behind 11 μs.  

 

 

Figure 10. Drop evolution in 20-28μs: the drop of the 1D 
method surpasses the 2D method. 

 

Figure 11. Comparison of drop volume: the solid line 
represents the 1D method and the dash line represents the 2D 
method. 

 

Figure 12. Comparison of mean velocity: solid line represents 
the 1D method and dash line represents the 2D method. 

From Figure 3 and Figure 8-11, we can find that the drop is a 
slender filament when it first pinches off from the nozzle. This 
kind of shape matches the lubrication analysis in drop breakup 
model very well. However, after a period of time, the contraction 
will definitely make the drop not slender anymore, and 
eventually the drop will become an oscillating sphere. Can the 
drop breakup model describe the contraction and oscillation 
accurately? To look at it more closely, we compare the horizontal 
length of drop in 1D and 2D methods by a stationary filament 
(Figure 13). Properties of liquid and dimensions of filament are 
 

3
0g/cm    1dym/cm   0.45P  0.2cm   1.8 mr Lρ σ µ µ=1 = = = =  (40) 

 
Thus the ohnesorge number is 0.1 and the ratio of length and 
radius is 9 which are reasonable parameters for ink filament and, 
more importantly, can guarantee an evolution of contraction and 
oscillation without breakup [20]. 

In Figure 13, good agreement is found before the drop 
reaches its minimum horizontal length where is exactly the 
period of contraction. After that, the oscillation amplitude and 
frequency of two methods diverge a lot. The intrinsic higher 
dissipation of 1D method during oscillation period results in the 
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its faster damping. Fortunately, compared with the contraction, 
oscillation does not substantially affect the droplets movement 
and evolution. 
 

 

Figure 13. Comparison of filament contraction and oscillation: 
a) filament shape: the dash line is the initial shape and the filled 
area is the shape at the fifth second. B) horizontal length: the 
solid line represents the 1D method and the dash line represents 
the 2D method. 

CONCLUSION 
We proposed a 1D numerical method to predict the droplet 

ejection of DoD inkjets including the drop breakup, drop 
coalescence and movement of meniscus. The model of drop 
breakup is based on lubrication approximation and solved by 
MOL in a moving mesh. The model of drop coalescence 
reconstructs the blending area between approaching droplets, 
realizing a smooth and stable merge. The model of meniscus 
movement bridge pressure and velocity profile through the 
unsteady Poiseuille flow. The overall 1D method is validated by 
a comparison with a high fidelity 2D simulation we developed 
before and good agreement is achieved. This work demonstrates 
that the proposed method enables rapid parametric analysis of 
droplet ejection of DoD inkjet as a function of nozzle 
dimensions, driving pressure and fluid properties. 
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